The Glow Blend peptide formulation combines three research peptides studied for complementary mechanisms across vascular biology, tissue regeneration, and cellular signaling in laboratory research models.
Vascular Biology and Angiogenesis
BPC-157 activates collateral circulation pathways that bypass occluded vessels, demonstrating unique "vascular recruitment" effects. The peptide modulates the Src-Caveolin-1-eNOS pathway for nitric oxide-mediated vasodilation and enhances VEGF-A and VEGFR1 expression in ischemic tissue models.[1][2][3]
GHK-Cu promotes VEGF-mediated angiogenesis with increased vascular density in wound healing systems. Studies show enhanced endothelial cell adhesion and tube formation coupled with decorin-mediated vascular stability.[4][5]
TB-500 activates epicardial progenitor cells contributing to coronary vessel formation. Research demonstrates HIF-1α stabilization that upregulates pro-angiogenic gene networks and promotes functional vessel maturation in cardiac models.[6][7]
Tissue Repair and Wound Healing
BPC-157 demonstrates growth hormone receptor upregulation in tendon fibroblasts, amplifying regenerative signaling. Studies show muscle-to-bone reattachment with new bone formation and restoration of myotendinous junctions across diverse tissue types.[8][9][10]
GHK-Cu stimulates collagen types I and III synthesis while modulating matrix metalloproteinases for balanced ECM turnover. Research reveals decorin upregulation regulating collagen fibril organization and accelerated re-epithelialization with reduced scar formation.[11][12]
TB-500 regulates cytoskeletal dynamics through G-actin sequestration, facilitating cell migration. The peptide induces MMP-1 expression enabling matrix remodeling during migration and activates ERK1/2 phosphorylation for proliferation signaling.[13][14][15]
Anti-Inflammatory Mechanisms
BPC-157 normalizes nitric oxide and malondialdehyde levels in oxidative stress models. Studies demonstrate modulation of inflammatory cytokines through NO system interactions and reduced tissue inflammatory markers.[16]
GHK-Cu suppresses NF-κB inflammatory signaling while activating Nrf2/Keap1 antioxidant pathways. Research shows reduced TNF-α, IL-6, and IL-1β expression in colitis models with improved barrier function through SIRT1/STAT3 regulation.[17][18]
TB-500 promotes M2 macrophage polarization associated with tissue repair rather than inflammatory phenotypes. Studies demonstrate downregulation of pro-inflammatory mediators and enhanced resolution-phase responses in wound models.[19][20]
Extracellular Matrix Regulation
BPC-157 promotes appropriate ECM restoration across multiple tissue types including tendon, ligament, muscle, and gastrointestinal tissues. Research demonstrates architectural restoration consistent with organized remodeling rather than fibrotic responses.[21]
GHK-Cu significantly upregulates decorin expression, which binds collagen fibrils to regulate diameter and organization. The peptide modulates TGF-β bioavailability through decorin-mediated sequestration and increases collagen and glycosaminoglycan synthesis with coordinated MMP activity for balanced turnover.[11]
TB-500 induces matrix metalloproteinase-1 expression enabling controlled matrix degradation for cell migration pathways. Studies show MMP-dependent migratory effects where matrix remodeling proves essential for epithelial advancement during wound healing.[14][22]
Oxidative Stress Modulation
BPC-157 normalizes nitric oxide and malondialdehyde levels in tissues subjected to oxidative insults. Research demonstrates homeostatic regulation maintaining physiological NO ranges while reducing lipid peroxidation markers.[23][24]
GHK-Cu activates Nrf2/Keap1 antioxidant pathways inducing protective enzyme expression. Studies show reduced malondialdehyde levels with restored glutathione and total antioxidant capacity in COPD models, while copper coordination supports antioxidant enzyme function.[17]
TB-500 provides indirect antioxidant effects through cellular protection mechanisms. Research demonstrates reduced inflammatory ROS generation and decreased oxidative damage markers in cardiac ischemia-reperfusion models.[25][26]
Research Use Only. All studies examine in vitro cellular mechanisms and preclinical animal models. This formulation is intended strictly for qualified research institutions and laboratories conducting peptide research and development purposes.
References
- Gojkovic, S., Krezic, I., Vranes, H., Zizek, H., Drmic, D., Horvat Pavlov, K., Petrovic, A., Batelja Vuletic, L., Milavic, M., Sikiric, S., Stilinovic, I., Samara, M., Knezevic, M., Barisic, I., Sjekavica, I., Lovric, E., Skrtic, A., Seiwerth, S., & Sikiric, P. (2021). BPC 157 Therapy and the Permanent Occlusion of the Superior Sagittal Sinus in Rat: Vascular Recruitment. In Biomedicines (Vol. 9, Issue 7, p. 744). MDPI AG. https://doi.org/10.3390/biomedicines9070744
- Hsieh, M.-J., Lee, C.-H., Chueh, H.-Y., Chang, G.-J., Huang, H.-Y., Lin, Y., & Pang, J.-H. S. (2020). Modulatory effects of BPC 157 on vasomotor tone and the activation of Src-Caveolin-1-endothelial nitric oxide synthase pathway. In Scientific Reports (Vol. 10, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-020-74022-y
- Wu, H., Wei, M., Li, N., Lu, Q., Shrestha, S. M., Tan, J., Zhang, Z., Wu, G., & Shi, R. (2020). Clopidogrel-Induced Gastric Injury in Rats is Attenuated by Stable Gastric Pentadecapeptide BPC 157 In Drug Design, Development and Therapy: Vol. Volume 14 (pp. 5599–5610). Informa UK Limited. https://doi.org/10.2147/dddt.s284163
- Yang, X., Zhang, Y., Huang, C., Lu, L., Chen, J., & Weng, Y. (2022). Biomimetic Hydrogel Scaffolds with Copper Peptide‐Functionalized RADA16 Nanofiber Improve Wound Healing in Diabetes. In Macromolecular Bioscience (Vol. 22, Issue 8). Wiley. https://doi.org/10.1002/mabi.202200019
- Mishra, S., Sandey, L., Verma, A., Sahu, H., Rathor, S., Gajbe, B., & Prasad, J. (2023). Pharmacological Evaluation and Characterization of Hyaluronic Acid-Based Hydrogel Embedded with Peptide Nanofibers for Wound Healing. In Journal of Chemical Health Risks. Green Publication. https://doi.org/10.53555/jchr.v13i6.2289
- Wang, Y., Yu, S., Shen, H., Wang, H., Wu, X., Wang, Q., Zhou, B., & Tan, Y. (2021). Thymosin β4 released from functionalized self-assembling peptide activates epicardium and enhances repair of infarcted myocardium. In Theranostics (Vol. 11, Issue 9, pp. 4262–4280). Ivyspring International Publisher. https://doi.org/10.7150/thno.52309
- Renga, G., Oikonomou, V., Moretti, S., Stincardini, C., Bellet, M. M., Pariano, M., Bartoli, A., Brancorsini, S., Mosci, P., Finocchi, A., Rossi, P., Costantini, C., Garaci, E., Goldstein, A. L., & Romani, L. (2019). Thymosin β4 promotes autophagy and repair via HIF-1α stabilization in chronic granulomatous disease. In Life Science Alliance (Vol. 2, Issue 6, p. e201900432). Life Science Alliance, LLC. https://doi.org/10.26508/lsa.201900432
- Chang, C.-H., Tsai, W.-C., Hsu, Y.-H., & Pang, J.-H. (2014). Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts. In Molecules (Vol. 19, Issue 11, pp. 19066–19077). MDPI AG. https://doi.org/10.3390/molecules191119066
- Matek, D., Matek, I., Staresinic, E., Japjec, M., Bojanic, I., Boban Blagaic, A., Beketic Oreskovic, L., Oreskovic, I., Ziger, T., Novinscak, T., Krezic, I., Strbe, S., Drinkovic, M., Brkic, F., Popic, J., Skrtic, A., Seiwerth, S., Staresinic, M., Sikiric, P., & Brizic, I. (2025). Stable Gastric Pentadecapeptide BPC 157 as Therapy After Surgical Detachment of the Quadriceps Muscle from Its Attachments for Muscle-to-Bone Reattachment in Rats. In Pharmaceutics (Vol. 17, Issue 1, p. 119). MDPI AG. https://doi.org/10.3390/pharmaceutics17010119
- Japjec, M., Horvat Pavlov, K., Petrovic, A., Staresinic, M., Sebecic, B., Buljan, M., Vranes, H., Giljanovic, A., Drmic, D., Japjec, M., Prtoric, A., Lovric, E., Batelja Vuletic, L., Dobric, I., Boban Blagaic, A., Skrtic, A., Seiwerth, S., & Predrag, S. (2021). Stable Gastric Pentadecapeptide BPC 157 as a Therapy for the Disable Myotendinous Junctions in Rats. In Biomedicines (Vol. 9, Issue 11, p. 1547). MDPI AG. https://doi.org/10.3390/biomedicines9111547
- Pickart, L., Vasquez-Soltero, J. M., & Margolina, A. (2015). GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration. In BioMed Research International (Vol. 2015, pp. 1–7). Wiley. https://doi.org/10.1155/2015/648108
- Wang, X., Liu, B., Xu, Q., Sun, H., Shi, M., Wang, D., Guo, M., Yu, J., Zhao, C., & Feng, B. (2017). GHK‐Cu‐liposomes accelerate scald wound healing in mice by promoting cell proliferation and angiogenesis. In Wound Repair and Regeneration (Vol. 25, Issue 2, pp. 270–278). Wiley. https://doi.org/10.1111/wrr.12520
- Sosne, G., Qiu, P., & Kurpakus‐Wheater, M. (2007). Thymosin beta 4: A novel corneal wound healing and anti-inflammatory agent. Clinical Ophthalmology, 1, 201–207.
- Qiu, P., Kurpakus‐Wheater, M., & Sosne, G. (2007). Matrix metalloproteinase activity is necessary for thymosin beta 4 promotion of epithelial cell migration. In Journal of Cellular Physiology (Vol. 212, Issue 1, pp. 165–173). Wiley. https://doi.org/10.1002/jcp.21012
- Yang, H.-M., Kang, S. W., Sung, J., Kim, K., & Kleinman, H. (2020). Purinergic Signaling Involvement in Thymosin β4-mediated Corneal Epithelial Cell Migration. In Current Eye Research (Vol. 45, Issue 11, pp. 1352–1358). Informa UK Limited. https://doi.org/10.1080/02713683.2020.1748891
- Gojkovic, S., Krezic, I., Vrdoljak, B., Malekinusic, D., Barisic, I., Petrovic, A., Pavlov, K. H., Kolovrat, M., Duzel, A., Knezevic, M., Kovac, K. K., Drmic, D., Vuletic, L. B., Kokot, A., Blagaic, A. B., Seiwerth, S., & Sikiric, P. (2020). Pentadecapeptide BPC 157 resolves suprahepatic occlusion of the inferior caval vein, Budd-Chiari syndrome model in rats. In World Journal of Gastrointestinal Pathophysiology (Vol. 11, Issue 1, pp. 1–19). Baishideng Publishing Group Inc. https://doi.org/10.4291/wjgp.v11.i1.1
- Zhang, Q., Yan, L., Lu, J., & Zhou, X. (2022). Glycyl-L-histidyl-L-lysine-Cu2+ attenuates cigarette smoke-induced pulmonary emphysema and inflammation by reducing oxidative stress pathway. In Frontiers in Molecular Biosciences (Vol. 9). Frontiers Media SA. https://doi.org/10.3389/fmolb.2022.925700
- Mao, S., Huang, J., Li, J., Sun, F., Zhang, Q., Cheng, Q., Zeng, W., Lei, D., Wang, S., & Yao, J. (2025). Exploring the beneficial effects of GHK-Cu on an experimental model of colitis and the underlying mechanisms. In Frontiers in Pharmacology (Vol. 16). Frontiers Media SA. https://doi.org/10.3389/fphar.2025.1551843
- Yu, H., Wang, B., Li, Z., Liu, K., Chen, W., Zhao, S., Zhou, Y., Wang, G., Zhou, Y., Chen, Y., Chen, H., Lai, Y., Wang, Q., Wang, J., Ni, B., Zhang, D., Pan, C., He, Y., & Li, L. (2025). Tβ4-exosome-loaded hemostatic and antibacterial hydrogel to improve vascular regeneration and modulate macrophage polarization for diabetic wound treatment. In Materials Today Bio (Vol. 31, p. 101585). Elsevier BV. https://doi.org/10.1016/j.mtbio.2025.101585
- Philp, D., & Kleinman, H. K. (2010). Animal studies with thymosin β4, a multifunctional tissue repair and regeneration peptide. In Annals of the New York Academy of Sciences (Vol. 1194, Issue 1, pp. 81–86). Wiley. https://doi.org/10.1111/j.1749-6632.2010.05479.x
- Seiwerth, S., Milavic, M., Vukojevic, J., Gojkovic, S., Krezic, I., Vuletic, L. B., Pavlov, K. H., Petrovic, A., Sikiric, S., Vranes, H., Prtoric, A., Zizek, H., Durasin, T., Dobric, I., Staresinic, M., Strbe, S., Knezevic, M., Sola, M., Kokot, A., … Sikiric, P. (2021). Stable Gastric Pentadecapeptide BPC 157 and Wound Healing. In Frontiers in Pharmacology (Vol. 12). Frontiers Media SA. https://doi.org/10.3389/fphar.2021.627533
- Qiu, P., & Sosne, G. (2006). Thymosin Beta 4 (Tß4) Stimulates Matrix Metalloproteinase (MMP)–1 Expression in Human Cornea Epithelial Cells and Promotes MMP–Dependent Cell Migration in vitro After Scrape Wounding. Investigative Ophthalmology & Visual Science, 47, 5027–5027.
- Amic, F., Drmic, D., Bilic, Z., Krezic, I., Zizek, H., Peklic, M., Klicek, R., Pajtak, A., Amic, E., Vidovic, T., Rakic, M., Perisa, M. M., Pavlov, K. H., Kokot, A., Tvrdeic, A., Blagaic, A. B., Zovak, M., Seiwerth, S., & Sikiric, P. (2018). Bypassing major venous occlusion and duodenal lesions in rats, and therapy with the stable gastric pentadecapeptide BPC 157, L-NAME and L-arginine. In World Journal of Gastroenterology (Vol. 24, Issue 47, pp. 5366–5378). Baishideng Publishing Group Inc. https://doi.org/10.3748/wjg.v24.i47.5366
- Cesar, L. B., Gojkovic, S., Krezic, I., Malekinusic, D., Zizek, H., Vuletic, L. B., Petrovic, A., Pavlov, K. H., Drmic, D., Kokot, A., Vlainic, J., Seiwerth, S., & Sikiric, P. (2020). Bowel adhesion and therapy with the stable gastric pentadecapeptide BPC 157, L-NAME and L-arginine in rats. In World Journal of Gastrointestinal Pharmacology and Therapeutics (Vol. 11, Issue 5, pp. 93–109). Baishideng Publishing Group Inc. https://doi.org/10.4292/wjgpt.v11.i5.93
- Peng, H., Xu, J., Yang, X.-P., Dai, X., Peterson, E. L., Carretero, O. A., & Rhaleb, N.-E. (2014). Thymosin-β4prevents cardiac rupture and improves cardiac function in mice with myocardial infarction. In American Journal of Physiology-Heart and Circulatory Physiology (Vol. 307, Issue 5, pp. H741–H751). American Physiological Society. https://doi.org/10.1152/ajpheart.00129.2014
- Zhang, Y., Dong, Q., Bian, X., Qiao, Z., Cui, C., Yang, N., Liu, J., Fu, R., Zhang, J., Jia, L., Wu, C., Guo, J., Lin, W., Wang, J., Fan, J., Li, Y., Liu, F., Yang, B., Jia, X., … Dou, K. (2025). Recombinant human thymosin beta 4 improves ischemic cardiac dysfunction in mice and patients with acute ST-segment elevation myocardial infarction after reperfusion. In Cardiovascular Research (Vol. 121, Issue 17, pp. 2747–2758). Oxford University Press (OUP). https://doi.org/10.1093/cvr/cvaf223